Experimental Research on Biorobotic Autonomous Undersea Vehicle

نویسندگان

  • Jianhong Liang
  • Hongxing Wei
  • Tianmiao Wang
  • Li Wen
  • Song Wang
  • Miao Liu
چکیده

On August 2004, the SPC-II robofish, developed by the Robotics Institute in Beijing University of Aeronautics and Astronautics, was used for aiding underwater archaeology in an experiment at the shipwreck site of Donggu gulf in Dongshan Island, Fujian Province. This experiment is not only the combination achievement of many subjects such as bionics, robotics, archaeology, oceanology, and so on, but also the first attempt to apply bionic propulsive mechanism to the real problem. Fernandez. Benoit, the pioneer of underwater archaeology in France, had said that “the biggest museum in the world is the sea-bottom” [1]. China is an ancient civilization country with a history of more than 5000 years. The voyage technique was used to be vigorous and business on the sea was very frequent, so we can imagine that there are abundant of cultural relic imbedded in the 3,000,000 sq.km sea area. In 1987, the laboratory of underwater archaeology was founded by the historical museum of China and then the first team of underwater archaeology was founded in China in 1990[1]. Now the underwater archaeology procedure can be divided into three phases. The first is large-scope searching. Usually the equipments such as sonar are carried by archaeological ship to find the doubtful site. Sometimes this work can be replaced by the information offered by fisherman. The second is the site validation. The equipments such as lighting and vidicon were carried to the sea-bottom to do close observation, and the pictures or sample objects are sent back to do more analyses. The third is salvage and excavation. It need long time to do underwater work such as divide region, clear bed load, recover site, salvage cultural relic and so on. In the above three phases, the last two are more pivotal and need to be performed on the sea-bottom. Normally they are completed by the archaeological team members. It can be seen that underwater work plays an important role in the task of underwater archaeology. Because of the restriction of human body physiology (narcosis of nitrogen), generally people can only dive to 60m to70m in depth. And meanwhile people are weightless in the water, movement inconvenience, overdraft of physical strength, short duration, and needing long time to be decompressed, all make the work inefficient[2]. The early underwater archaeology was difficult, and the deepwater archaeology was almost impossible in a manner. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Yaw Regulation and Trajectory Control of Biorobotic AUV Using Mechanical Fins Based on CFD Parametrization

This paper treats the question of control of a biorobotic autonomous undersea vehicle (BAUV) in the yaw plane using a biomimetic mechanism resembling the pectoral fins of fish. These fins are assumed to undergo a combined sway-yaw motion and the bias angle is treated as a control input, which is varied in time to accomplish the maneuver in the yaw-plane. The forces and moments produced by the f...

متن کامل

Bayesian Visual Tracking for Inspection of Undersea Power and Telecommunication Cables

The surveillance and inspection of underwater installations such as power and telecommunication cables are currently carried out by trained operators who, from the surface, guide a Remotely Operated Vehicle (ROV) with cameras mounted over it. This manual visual control is, however, a very tedious job that tends to fail if the operator looses concentration. This paper describes a tracking system...

متن کامل

Adaptive autonomous underwater vehicles for littoral surveillance

Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research into undersea surveillance using AUVs progresses, issues arise as to how an AUV acquires, acts on, and shares information about the undersea battle space. These issues naturally t...

متن کامل

Automated Anti-Virus Deployment

NATO Undersea Research Centre (SACLANTCEN), the research establishment of the Allied Command Transformation (ACT) strongly relies on Network Centric technologies and capabilities to improve the effectiveness of its scientific research. This requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards, to ensure transparent interoperabi...

متن کامل

Numerical Simulation of Neural Network-Controlled Unmanned Undersea Vehicle

In this paper, the locomotion of an autonomously navigated undersea vehicle that uses vorticity control propulsion is computationally simulated. The navigation procedure employs a set of vehicle geometric and state variables to predict the needed vehicle body deformations in order to pass through a set of predefined path-points. To simulate the movement of the vehicle, a two-dimensional unstead...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012